在1970年以前,我關于廣義相對論的研究,主要集中于是否存在一個大爆炸奇點。然 而,同年11月我的女兒露西出生后不久的一個晚上,當我上床時,我開始思考黑洞的問題。我的殘廢使得這個過程相當慢,所以我有許多時間。那時候還不存在關 于空間-時間的那一點是在黑洞之內(nèi)還是在黑洞之外的準確定義。我已經(jīng)和羅杰·彭羅斯討論過將黑洞定義為不能逃逸到遠處的事件集合的想法,這也就是現(xiàn)在被廣 泛接受的定義。它意味著,黑洞邊界——即事件視界——是由剛好不能從黑洞逃逸而永遠只在邊緣上徘徊的光線在空間-時間里的路徑所形成的(圖7.1)。這有 點像從警察那兒逃開,但是僅僅只能比警察快一步,而不能徹底地逃脫的情景!
我忽然意識到,這些光線的路徑永遠不可能互相靠近。如果它們靠近了,它們最終就必須互相撞上。這正如和另一個從對面逃離警察的人相遇—— 你們倆都會被抓?。海ɑ蛘?,在這種情形下落到黑洞中去。)但是,如果這些光線被黑洞所吞沒,那它們就不可能在黑洞的邊界上呆過。所以在事件視界上的光線的 路徑必須永遠是互相平行運動或互相散開。另一種看到這一點的方法是,事件視界,亦即黑洞邊界,正像一個影子的邊緣——一個即將臨頭的災難的影子。如果你看 到在遠距離上的一個源(譬如太陽)投下的影子,就能明白邊緣上的光線不會互相靠近。
如果從事件視界(亦即黑洞邊界)來的光線永遠不可能互相靠近,則事件視界的面積可以保持不變或者隨時間增大,但它永遠不會減小——因為這意味著至少一些在邊界上的光線必須互相靠近。 事實上,只要物質(zhì)或輻射落到黑洞中去,這面積就會增大(圖7.2) ;或者如果兩個黑洞碰撞并合并成一個單獨的黑洞,這最后的黑洞的事件視界面積就會大于或等于原先黑洞的事件視界面積的總和(圖7.3) 。 事件視界面積的非減性*質(zhì)給黑洞的可能行為加上了重要的限制。我如此地為我的發(fā)現(xiàn)所激動,以至于當夜沒睡多少。
圖7.1
圖7.2? 圖7.3
? 第二天,我給羅杰·彭羅斯打電話,他同意我的結果。我想,事實上他已經(jīng)知道了這個面積的性*質(zhì)。然而,他是用稍微不同的黑洞定義。他沒有意識到,假定黑洞已終止于不隨時間變化的狀態(tài),按照這兩種定義,黑洞的邊界以及其面積都應是一樣的。
人們非常容易從黑洞面積的不減行為聯(lián)想起被叫做熵的物理量的行為。熵是測量一個系統(tǒng)的無序的程度。常識告訴我們,如果不進行外加干涉,事物總是傾向于增 加它的無序度。(例如你只要停止保養(yǎng)房子,看會發(fā)生什么?)人們可以從無序中創(chuàng)造出有序來(例如你可以油漆房子),但是必須消耗精力或能量,因而減少了可 得到的有序能量的數(shù)量。
熱力學第二定律是這個觀念的一個準確描述。它陳述道:一個孤立系統(tǒng)的熵總是增加的,并且將兩個系統(tǒng)連接在一起時,其合并系統(tǒng)的熵大于所有單獨系統(tǒng)熵的總 和。譬如,考慮一盒氣體分子的系統(tǒng)。分子可以認為是不斷互相碰撞并不斷從盒子壁反彈回來的康樂球。氣體的溫度越高,分子運動得越快,這樣它們撞擊盒壁越頻 繁越厲害,而且它們作用到壁上的向外的壓力越大。假定初始時所有分子被一隔板限制在盒子的左半部,如果接著將隔板除去,這些分子將散開并充滿整個盒子。在 以后的某一時刻,所有這些分子偶爾會都呆在右半部或回到左半部,但占絕對優(yōu)勢的可能性*是在左右兩半分子的數(shù)目大致相同。這種狀態(tài)比原先分子在左半部分的狀 態(tài)更加無序,所以人們說熵增加了。類似地,我們將一個充滿氧分子的盒子和另一個充滿氮分子的盒子連在一起并除去中間的壁,則氧分子和氮分子就開始混合。在 后來的時刻,最可能的狀態(tài)是兩個盒子都充滿了相當均勻的氧分子和氮分子的混合物。這種狀態(tài)比原先分開的兩盒的初始狀態(tài)更無序,即具有更大的熵。
和其他科學定律,譬如牛頓引力定律相比,熱力學定律的狀況相當不同,例如,它只是在絕大多數(shù)的而非所有情形下成立。在以后某一時刻,所有我們第一個盒子 中的氣體分子在盒子的一半被發(fā)現(xiàn)的概率只有幾萬億分之一,但它們可能發(fā)生。但是,如果附近有一黑洞,看來存在一種非常容易的方法違反第二定律:只要將一些 具有大量熵的物體,譬如一盒氣體扔進黑洞里。黑洞外物體的總熵就會減少。當然,人們?nèi)匀豢梢哉f包括黑洞里的熵的總熵沒有降低—— 但是由于沒有辦法看到黑洞里面,我們不能知道里面物體的熵為多少。如果黑洞具有某一特征,黑洞外的觀察者因之可知道它的熵,并且只要攜帶熵的物體一落入黑 洞,它就會增加,那將是很美妙的。緊接著上述的黑洞面積定理的發(fā)現(xiàn)(即只要物體落入黑洞,它的事件視界面積就會增加),普林斯頓一位名叫雅可布·柏肯斯坦 的研究生提出,事件視界的面積即是黑洞熵的量度。由于攜帶熵的物質(zhì)落到黑洞中去,它的事件視界的面積就會增加,這樣黑洞外物質(zhì)的熵和事件視界面積的和就永 遠不會降低。
看來在大多數(shù)情況下,這個建議不違背熱力學第二定律,然而還有一個致命的瑕疵。如果一個黑洞具有熵,那它也應該有溫度。但具有特定溫度的物體必須以一定 的速率發(fā)出輻射。從日常經(jīng)驗知道:只要將火鉗在火上燒至紅熱就能發(fā)出輻射。但在低溫下物體也發(fā)出輻射;通常情況下,只是因為其輻射相當小而沒被注意到。為 了不違反熱力學第二定律這輻射是必須的。所以黑洞必須發(fā)出輻射。但正是按照其定義,黑洞被認為是不發(fā)出任何東西的物體,所以看來,不能認為黑洞的事件視界 的面積是它的熵。1972年,我和布蘭登·卡特以及美國同事詹姆·巴丁合寫了一篇論文,在論文中我們指出,雖然在 熵和事件視界的面積之間存在許多相似點,但還存在著這個致命的困難。我必須承認,寫此文章的部份動機是因為被柏肯斯坦所激怒,我覺得他濫用了我的事件視界 面積增加的發(fā)現(xiàn)。然而,最后發(fā)現(xiàn),雖然是在一種他肯定沒有預料到的情形下,但他基本上還是正確的。
1973 年9月我訪問莫斯科時,和蘇聯(lián)兩位最主要的專家雅可夫·捷爾多維奇和亞歷山大·斯塔拉賓斯基討論黑洞問題。他們說服我,按照量子力學不確定性*原理,旋轉(zhuǎn)黑 洞應產(chǎn)生并輻射粒子。在物理學的基礎上,我相信他們的論點,但是不喜歡他們計算輻射所用的數(shù)學方法。所以我著手設計一種更好的數(shù)學處理方法,并于1973 年11月底在牛津的一次非正式討論會上將其公布于眾。那時我還沒計算出實際上輻射多少出來。我預料要去發(fā)現(xiàn)的正是捷爾多維奇和斯塔拉賓斯基所預言的從旋轉(zhuǎn) 黑洞發(fā)出的輻射。然而,當我做了計算,使我既驚奇又惱火的是,我發(fā)現(xiàn)甚至非旋轉(zhuǎn)黑洞顯然也以不變速率產(chǎn)生和發(fā)射粒子。起初我以為這種輻射表明我所用的一種 近似無效。我擔心如果柏肯斯坦發(fā)現(xiàn)了這個情況,他就一定會用它去進一步支持他關于黑洞熵的思想,而我仍然不喜歡這種思想。然而,我越仔細推敲,越覺得這近 似其實應該有效。但是,最后使我信服這輻射是真實的理由是,這輻射的粒子譜剛好是一個熱體輻射的譜,而且黑洞以剛好防止第二定律被違反的準確速率發(fā)射粒 子。此后,其他人用多種不同的形式重復了這個計算,他們所有人都證實了黑洞必須如同一個熱體那樣發(fā)射粒子和輻射,其溫度只依賴于黑洞的質(zhì)量——質(zhì)量越大則 溫度越低。
我們知道,任何東西都不能從黑洞的事件視界之內(nèi)逃逸出來,何以黑洞會發(fā)射粒子呢?量子理論給我們的回答是,粒子不是從黑洞里面出來的,而是從緊靠黑洞的事件視界的外面的“空” 的空間來的!我們可以用以下的方法去理解它:我們以為是“真空”的空間不能是完全空的,因為那就會意味著諸如引力場和電磁場的所有場都必須剛好是零。然而 場的數(shù)值和它的時間變化率如同不確定性*原理所表明的粒子位置和速度那樣,對一個量知道得越準確,則對另一個量知道得越不準確。所以在空的空間里場不可能嚴 格地被固定為零,因為那樣它就既有準確的值(零)又有準確的變化率(也是零)。場的值必須有一定的最小的不準確量或量子起伏。人們可以將這些起伏理解為光 或引力的粒子對,它們在某一時刻同時出現(xiàn)、互相離開、然后又互相靠近而且互相湮滅。這些粒子正如同攜帶太陽引力的虛粒子:它們不像真的粒子那樣能用粒子加 速器直接探測到。然而,可以測量出它們的間接效應。例如,測出繞著原子運動的電子能量發(fā)生的微小變化和理論預言是如此相一致,以至于達到了令人驚訝的地 步。不確定性*原理還預言了類似的虛的物質(zhì)粒子對的存在,例如電子對和夸克對。然而在這種情形下,粒子對的一個成員為粒子而另一成員為反粒子(光和引力的反 粒子正是和粒子相同)。
圖7.4
因為能量不能無中生有,所以粒子反粒子對中的一個參與者有正的能量,而另一個有負的能量。由于在正常情況下實粒子總是具有正能量,所以具有負能量的那一 個粒子注定是短命的虛粒子。它必須找到它的伴侶并與之相湮滅。然而,一顆接近大質(zhì)量物體的實粒子比它遠離此物體時能量更小,因為要花費能量抵抗物體的引力 吸引才能將其推到遠處。正常情況下,這粒子的能量仍然是正的。但是黑洞里的引力是如此之強,甚至在那兒一個實粒子的能量都會是負的。所以,如果存在黑洞, 帶有負能量的虛粒子落到黑洞里變成實粒子或?qū)嵎戳W邮强赡艿?。這種情形下,它不再需要和它的伴侶相湮滅了,它被拋棄的伴侶也可以落到黑洞中去。啊,具有正 能量的它也可以作為實粒子或?qū)嵎戳W訌暮诙吹泥徑幼撸▓D7.4) 。對于一個遠處的觀察者而言,這看起來就像粒子是從黑洞發(fā)射出來一樣。黑洞越小,負能粒子在變成實粒子之前必須走的距離越短,這樣黑洞發(fā)射率和表觀溫度也就越大。
輻射出去的正能量會被落入黑洞的負能粒子流所平衡。按照愛因斯坦方程E=mc^2(E是能量,m是質(zhì)量,c為光速),能量和質(zhì)量成正比。所以往黑洞去的負能量流減少它的質(zhì)量。當黑洞損失質(zhì)量時,它的事件視界面積變小,但是它發(fā)射出的輻射的熵過量地補償了黑洞的熵的減少,所以第二定律從未被違反過。
還有,黑洞的質(zhì)量越小,則其溫度越高。這樣當黑洞損失質(zhì)量時,它的溫度和發(fā)射率增加,因而它的質(zhì)量損失得更快。人們并不很清楚,當黑洞的質(zhì)量最后變得極小時會發(fā)生什么。但最合理的猜想是,它最終將會在一個巨大的、相當于幾百萬顆氫彈爆炸的發(fā)射爆中消失殆盡。
一個具有幾倍太陽質(zhì)量的黑洞只具有千萬分之一度的絕對溫度。這比充滿宇宙的微波輻射的溫度(大約2.7K) 要低得多,所以這種黑洞的輻射比它吸收的還要少。如果宇宙注定繼續(xù)永遠膨脹下去,微波輻射的溫度就會最終減小到比這黑洞的溫度還低,它就開始損失質(zhì)量。但 是即使那時候,它的溫度是如此之低,以至于要用100億億億億億億億億年(1后面跟66個O) 才全部蒸發(fā)完。這比宇宙的年齡長得多了,宇宙的年齡大約只有100到200億年(1或2后面跟10個0)。另一方面,正如第六章提及的,在宇宙的極早期階 段存在由于無規(guī)性*引起的坍縮而形成的質(zhì)量極小的太初黑洞。這樣的小黑洞會有高得多的溫度,并以大得多的速率發(fā)生輻射。具有10億噸初始質(zhì)量的太初黑洞的壽 命大體和宇宙的年齡相同。初始質(zhì)量比這小的太初黑洞應該已蒸發(fā)完畢,但那些比這稍大的黑洞仍在輻射出X射線以及伽瑪射線。這些X射線和伽瑪射線像是光波, 只是波長短得多。這樣的黑洞幾乎不配這黑的綽號:它們實際上是白熱的,正以大約1萬兆瓦的功率發(fā)射能量。
只要我們能夠駕馭黑洞的功率,一個這樣的黑洞可以開動十個大型的發(fā)電站。然而,這是非常困難的:這黑洞的質(zhì)量和一座山差不多,卻被壓縮成萬億分之一英寸 亦即比一個原子核的尺度還?。∪绻诘厍虮砻嫔夏阌羞@樣的一個黑洞,就無法阻止它透過地面落到地球的中心。它會穿過地球而來回振動,直到最后停在地球的中 心。所以僅有的放置黑洞并利用之發(fā)出能量的地方是繞著地球轉(zhuǎn)動的軌道,而僅有的將其放到這軌道上的辦法是,用在它之前的一個大質(zhì)量的吸引力去拖它,這和在 驢子前面放一根胡羅卜相當像。至少在最近的將來,這個設想并不現(xiàn)實。
但是,即使我們不能駕馭這些太初黑洞的輻射,我們觀測到它們的機遇又如何呢?我們可以去尋找在太初黑洞壽命的大部分時間里發(fā)出的伽瑪射線輻射。雖然它們 在很遠以外的地方,從大部分黑洞來的輻射非常弱,但是,從所有它們來的總的輻射是可以檢測得到的。我們確實觀察到了這樣的一個伽瑪射線背景:圖7.5 表示觀察到的強度隨頻率的變化。然而,這個背景可以是也可能是除了太初黑洞之外的過程產(chǎn)生的。圖7.5中點線指出,如果在每立方光年平均有300個太初黑 洞,它們所發(fā)射的伽瑪射線的強度應如何地隨頻率而變化。所以可以說,伽瑪射線背景的觀測并沒給太初黑洞提供任何正的證據(jù)。但它們確實告訴我們,在宇宙中每 立方光年不可能平均有300個以上的太初黑洞。這個極限表明,太初黑洞最多只能構成宇宙中百萬分之一的物質(zhì)。
圖7.5
由于太初黑洞是如此之稀罕,看來不太可能存在一個近到我們可以將其當作一個單獨的伽瑪射線源來觀察。但是由于引力會將太初黑洞往任何物質(zhì)處拉近,所以在星系里面和附近它們應該會更稠密得多。雖然伽瑪射線背景告訴我們,平均每立方光年不可能有多于300 個太初黑洞,但它并沒有告訴我們,太初黑洞在我們星系中的密度。譬如講,如果它們的密度高100萬倍,則離開我們最近的黑洞可能大約在10億公里遠,或者 大約是已知的最遠的行星——冥王星那么遠。在這個距離上去探測黑洞恒定的輻射,即使其功率為1萬兆瓦,仍是非常困難的。人們必須在合理的時間間隔里,譬如 一星期,從同方向檢測到幾個伽瑪射線量子,以便觀測到一個太初黑洞。否則,它們僅可能是背景的一部份。因為伽瑪射線有非常高的頻率,從普郎克量子原理得 知,每一伽瑪射線量子具有非常高的能量,這樣甚至發(fā)射一萬兆瓦都不需要許多量子。而要觀測到從冥王星這么遠來的如此少的粒子,需要一個比任何迄今已造成的 更大的伽瑪射線探測器。況且,由于伽瑪射線不能穿透大氣層,此探測器必須放到外空間。
當然,如果一顆像冥王星這么近的黑洞已達到它生命的末期并要爆炸開來,去檢測其最后爆炸的輻射是容易的。但是,如果一個黑洞已經(jīng)輻射了100 至200億年,不在過去或?qū)淼膸装偃f年里,而是在未來的若干年里到達它生命的終結的可能性*真是相當?。∷栽谀愕难芯拷蛸N用光之前,為了有一合理的機會 看到爆炸,必須找到在大約1光年距離之內(nèi)檢測任何爆炸的方法。你仍需要一個相當大的伽瑪射線探測器,以便去檢測從這爆炸來的若干伽瑪射線量子。然而,在這 種情形下,不必去確定所有的量子是否來自同一方向,只要觀測到所有它們是在一個很短的時間間隔里來到的,就足夠使人相當確信它們是從同一爆炸來的。
整個地球大氣可以看作是一個能夠認出太初黑洞的伽瑪射線探測器。(無論如何,我們不太可能造出比這更大的探測器?。┊斠粋€高能的伽瑪射線量子打到我們大 氣的原子上時,它會產(chǎn)生出電子正電子(反電子)對。當這些對打到其他原子上時,它們依序會產(chǎn)生出更多的電子正電子對,所以人們得到了所謂的電子陣雨。其結 果是產(chǎn)生稱作切倫科夫輻射的光的形式。因而,我們可以由尋找夜空的閃光來檢測伽瑪射線爆。當然,存在許多其他現(xiàn)象,如閃電和太陽光從翻跟斗的衛(wèi)星以及軌道 上的碎片的反射,都能在天空發(fā)出閃光。人們可在兩個或更多的隔開相當遠的地點同時觀察這閃光,將伽瑪射線爆從以上所說的現(xiàn)象中識別出來。兩位都柏林的科學 家奈爾·波特和特勒伏·威克斯利用阿歷桑那州的望遠鏡進行了這類的探索。他們找到了一些閃光,但沒有一個可以確認為是從太初黑洞來的伽瑪射線爆。
即使對太初黑洞的探索證明是否定的,并且看來可能會是這樣,仍然給了我們關于極早期宇宙的重要信息。如果早期宇宙曾經(jīng)是紊亂或無規(guī)的,或者物質(zhì)的壓力很 低,可以預料到會產(chǎn)生比我們對伽瑪射線背景所作的觀測所設下的極限更多的太初黑洞。只有當早期宇宙是非常光滑和均勻的,并有很高的壓力,人們才能解釋為何 沒有觀測到太初黑洞。
◎ ◎ ◎ ◎ ◎
黑洞輻射的思想是第一個這樣的例子,它以基本的方式依賴于本世紀兩個偉大理論即廣義相對論和量子力學所作的預言。因為它推翻了已有的觀點,所以一開始就引起了許多反對:“黑 洞怎么會輻射東西出來?”當我在牛津附近的盧瑟福-阿普頓實驗室的一次會議上,第一次宣布我的計算結果時,受到了普遍質(zhì)疑。我講演結束后,會議主席、倫敦 國王學院的約翰·泰勒宣布這一切都是毫無意義的。他甚至為此還寫了一篇論文。然而,最終包括約翰·泰勒在內(nèi)的大部分人都得出結論:如果我們關于廣義相對論 和量子力學的其他觀念是正確的,黑洞必須像熱體那樣輻射。這樣,即使我們還不能找到一個太初黑洞,大家相當普遍地同意,如果找到的話,它必須正在發(fā)射出大 量的伽瑪射線和X射線。
黑洞輻射的存在看來意味著,引力坍縮不像我們曾經(jīng)認為的那樣是最終的、不可逆轉(zhuǎn)的。如果一個航天員落到黑洞中去,黑洞的質(zhì)量將增加,但是最終這額外質(zhì)量的等效能量會以輻射的形式回到宇宙中去。這樣,此航天員在某種意義上被“再循環(huán)”了。然而,這是一種非??蓱z的不朽,當他在黑洞里被撕開時,他的任何個人的時間的概念幾乎肯定都達到了終點,甚至最終從黑洞輻射出來的粒子的種類一般都和構成這航天員的不同:這航天員所遺留下來的僅有特征是他的質(zhì)量或能量。
當黑洞的質(zhì)量大于幾分之一克時,我用以推導黑洞輻射的近似應是很有效的。但是,當黑洞在它的生命晚期,質(zhì)量變成非常小時,這近似就失效了。最可能的結果 看來是,它至少從宇宙的我們這一區(qū)域消失了,帶走了航天員和可能在它里面的任何奇點(如果其中確有一個奇點的話)。這是量子力學能夠去掉廣義相對論預言的 奇點的第一個跡象。然而,我和其他人在1974年所用的方法不能回答諸如量子引力論中是否會發(fā)生奇性*的問題。所以 從1975年以來,根據(jù)理查德·費因曼對于歷史求和的思想,我開始發(fā)展一種更強有力的量子引力論方法。這種方法對宇宙的開端和終結,以及其中的諸如航天員 之類的存在物給出的答案,這些將在下兩章中敘述。我們將看到,雖然不確定性*原理對于我們所有的預言的準確性*都加上了限制,同時它卻可以排除掉發(fā)生在空間- 時間奇點處的基本的不可預言性*。